
Solution for CISC 365 Test 4, Fall 2010 
 
1. No, greedy is not optimal.  Consider this counterexample. 
Task 1 starts at 1, ends at 3 (length 2) 
Task 2 starts at 4, ends at 6 (length 2) 
Task 3 starts at 2, ends at 5 (length 3) 
Greedy selects task 3, and thereby eliminates both task 1 and 2; total time is 3 hours. 
Optimal selects tasks 1 and 2, for a total time of 4 hours. 
 
2. (a) Yes. The denominations are multiples of one another.  If you start with a set of 
coins chosen according to the greedy method, then the only way to change the set of 
coins is to replace a 6 coin by smaller coins, or replace a 3 coin by pennies.  Either way 
increases the coin count, so greedy is optimal. 
(b) No. As a counterexample, select coins that total to a value of 8.  Greedy first selects a 
6 coin, and then must fill the remainder with two pennies, for a total of 3 coins.  Optimal 
selects two coins of value 4; this outperforms the greedy algorithm. 
 
3. There are two ways to make the tree, because of a tie at node value 35. 
              100 
             /  \ 
           65    \ 
          /  \    \ 
        35    \    \ 
       /  \    \    \ 
     20    \    \    \ 
   /   \    \    \    \    
  /     10   \    \    \ 
 /     / \    \    \    \ 
A10  B5   E5  C15  D30  F35 
 

Using 0 on the left branch and 1 on the 
right, the code is 
A 0000   B 00010   C 001 
D 01     E 00011   F 1 
The ones and zeros can be switched 
around, but all codes from this tree have 4 
bits for A, 5 bits for B, 3 bits for C, 2 bits 
for D, 5 bits for E, 1 bit for F.  

 
Here is a second way to make the tree, choosing the other “35” node first. 
          100 
         /   \ 
       35     \ 
      /  \     \ 
    20    \     \ 
   /  \    \     \    
  /    10   \     65 
 /    / \    \   /  \ 
A10  B5  E5 C15 D30 F35 
 

Using 0 on the left branch and 1 on the 
right, the code is 
A 00   B 0010   C 01      
D 10   E 0011   F 11 
The ones and zeros can be switched, but all 
codes from this tree have 3 bits for A, 4 
bits for B, 2 bits for C, 2 bits for D, 4 bits 
for E, 2 bits for F.  
 

 



4.  Here are some possible greedy strategies.  The first three strategies are non-optimal; 
the four strategy produces an optimal solution. 
• Schedule the task with largest penalty first.  Sort the tasks by penalty and schedule 

them in that order.  This can fail: a task with large penalty is placed needlessly early 
in the schedule, and that blocks another task that has an earlier deadline. For example  
  task deadline penalty 

  1      2      100 
  2      1       50  
Greedy uses task order 1, 2, for a penalty of 50. 
Optimal uses task order 2, 1, for a penalty of 0. 

• Schedule the task with the earliest deadline first.  Sort the tasks by deadline and 
schedule them in that order.  This can fail: we may miss the deadline for a task that 
has a late deadline and very high penalty, because there are a bunch of tasks with 
earlier deadlines and low penalties. For example  
  task deadline penalty 

  1      1        5 
  2      1        5  
  3      2      100       
Greedy uses task order 1, 2, 3, for a penalty of 100. 
Optimal uses task order 3, 1, 2, for a penalty of 5.  

• Sort by the ratio of penalty/deadline and schedule tasks with highest penalty/deadline 
ratio first. This can fail. For example  
  task deadline penalty 

  1      2      100 
  2      2      100  
  3      1       51       
Greedy uses task order 3, 1, 2, for a penalty of 100. 
Optimal uses task order 1, 2, 3, for a penalty of 51.  

• The following greedy strategy works. Proceed by placing large-penalty tasks at or 
before their deadline, whenever possible.  In detail, find schedule-spots for the tasks 
in order from largest-penalty task to smallest-penalty task.  When finding a schedule-
spot for a task: put the task at its deadline, or if that spot is full then use the first 
empty spot before its deadline.  If all of the spots at and before the deadline are full, 
then we have to incur the penalty for this task, and we place the task at the very end 
of the schedule (into the empty spot that is closest to the end of the schedule). Placing 
the penalty tasks this way ensures that they do not needlessly block the on-time 
completion of any other task we schedule later. The code for this algorithm is on the 
next page. 

 



// The schedule is created in array “schedule”.  Initially,  
// schedule[j]=-1 for 1<=j<=n.  This indicates that slot j (hour j)  
// hasn’t had a task assigned to it yet. 
// When task i is scheduled for hour j, we set schedule[j]=i. 
 
int schedule[1..n] = -1;  // initialize all entries to -1 
int penalty[1..n];      // the penalities (given as input) 
int deadline[1..n];     // the deadlines (given as input 
int totalpenalty = 0;;  // the total penalty for this schedule 
 
for (i=1 to n) { 
    // Find the next task to schedule.  That’s the unscheduled task  
    // with highest penalty. 
    int maxpenalty = -1; 
    int nexttask = -1;  // the task we will schedule next 
    for (j=1 to n) { 
        if (penalty[j]>maxpenalty) { 
            maxpenalty=penalty[j]; 
            nexttask=j; 
            } 
        } 
 
    // Schedule nexttask.  Put it as late as possible, but before its 
    // deadline.  If all those spots are taken, then put it at the end. 
    int spot = deadline[nexttask]; 
    while ((schedule[spot] != -1) and (spot > 0)) 
        spot = spot-1; 
    if (spot==0) {  
        // Nexttask cannot make its deadline, so put nexttask  
        // at the end of the schedule. 
        totalpenalty = totalpenalty + penalty[nexttask]; 
        spot = n; 
        while (schedule[spot] != -1) 
            spot = spot-1; 
        } 
        schedule[spot] = nexttask; 
        penalty[nexttask]=-1;  // indicate that we have already  
                               // scheduled this task. 
    } 
 
// The answer is in array schedule[1..n], with penalty equal 
// to totalpenalty. 
    


